Automakers See Opportunity with Embedded Handwriting



Why handwriting technology in the automotive cockpit will continue to see dramatic growth.

Many people who don’t yet use handwriting technology on phones or tablets as computing input mechanisms may nonetheless already be familiar with digital handwriting technology. There’s a good chance they’ve been introduced to it in what might seem an unlikely place: Their cars.

Figure 1: In the new automotive ecosystem, embedded sensors and display units can communicate with mobile devices inside the car and gather all sorts of external information via the web.

Figure 1: In the new automotive ecosystem, embedded sensors and display units can communicate with mobile devices inside the car and gather all sorts of external information via the web.

Last year, higher-end auto manufacturers like Audi, Mercedes and Tesla began shipping cars with embedded handwriting technology for controlling GPS systems, entertainment systems and other dashboard controls. Watch a 10-second video showing handwriting at work in an Acura here and learn a bit more about the overall concept here.

But all of this is just the beginning. According to Frost & Sullivan, the market for handwriting recognition (HWR) technology in cars will grow at a rate of more than 30 percent each year through 2020. “The industry is now moving towards controlling the entire infotainment with help from HWR,” the firm adds.

Embedded systems are tough to design: By nature, they’re constrained not only by limited storage space, but also limited memory space and typically, lower performance CPUs compared to computational devices. But even bound by these limitations, today’s digital handwriting technology has delivered remarkable accuracy and consistent benefits to the automotive industry. The most recent technology includes the ability to superimpose characters, cursive words or portions of words on top of each other on the touchpad and still accurately recognize input. A keyboard option incorporating smooth typing enables a true multimodal solution. Here are some reasons why handwriting technology in the automotive cockpit will continue to see dramatic growth:

  • Low driver distraction interfaces have evolved to require handwriting. One reason that handwriting provides a more effective option for controlling GPS or entertainment systems compared to voice are because cars are often noisy, making it difficult to reliably give instructions. Another reason is that voice command systems are very difficult to edit, which makes it more challenging to either revise input or correct recognition errors. Finally, handwriting allows drivers to keep their attention safely focused on the road: Today’s tech is designed for use when the driver isn’t looking at what he’s writing on the touchpad.
  • Multimodal systems are easy for the user to manipulate. Car manufacturers care about customer satisfaction, and drivers today demand a consistent user experience when inputting information—whether they’re doing it by hand, keyboard or voice. Drivers want multiple methods to input that information, depending on what’s most convenient and more importantly, safe. Consistency is key: System responses to keyboard input need to be consistent with responses to handwritten input. No one wants to get a different dictionary response to a query if they’re writing by hand rather than  keyboarding, for instance. A single multimodal system pre-emptively solves that potential problem.
  • Multimodal is great for the integrator. What’s great about multimodal design for systems integrators is that they only need to integrate with a single technology provider that handles multiple forms of input instead of integrating several different functional libraries and debugging any adverse interactions. This shortens the development time required for integration and lessens demands on memory resources and storage. Ultimately, integrating a multimodal interface means developing products that are often lower-cost, quicker time-to-market, and easier to test and validate. A big win all around.

Handwriting also wins points for safety and accuracy. The American Automobile Association (AAA) ranked voice-based command systems, such as the iPhone’s Siri, and found that it significantly distracted car drivers. In a worst-case situation, drivers even at the low speed of 25 mph were distracted for up to 27 seconds, during which they travelled more than three football fields in length.

Handwriting adapts well to multiple situations—e.g., character input when driving, and word input when stopped. Drivers can reach down and direct their cars’ GPS or entertainment systems in dozens of languages (as selected by the OEM), via either cursive or block characters that are easily recognizable, and that can even be written at a tilt—up to over 30 degrees off a level line—and still be recognized. The ability to recognize letters even written at a significant tilt allows for a great deal of human error, which in turn enables increased safety.

Figure 2: Embedded handwriting technology, complemented with voice and other multimodal input options, offers today’s drivers an effective way to enjoy more applications with complex features even as states increase regulation

Figure 2: Embedded handwriting technology, complemented with voice and other multimodal input options, offers today’s drivers an effective way to enjoy more applications with complex features even as states increase regulation.

Handwriting, in sum, is a natural fit for inclusion in the auto market because it offers an intuitive method to control the automotive cockpit, assures minimum driver distraction, and provides a natural input method and low learning curve. Drivers of all ages can use it, and it offers high recognition accuracy of letters, numbers and gestures.

And the handwriting technology in cars can blossom into a full note-taking application for drivers to use when they’re stopped. This is ideal for road warrior executives who must constantly attend meetings, travel and share their notes.

Handwritten input, or ‘digital ink,’ is now as fully capable to be interpreted to text as input from the keyboard and mouse. Furthermore, diagrams such as mind maps, organizational charts, and flow diagrams are capable of being fully converted to digital form in a manner that allows for changes and editing. Today’s technology allows you to create content, edit and format that content, create diagrams, input complex math equations, and easily incorporate the interpreted handwriting results into your digital document workflow.

A booming professional services market has emerged to support developers of embedded handwriting technology, too. Handwriting technology vendors are offering in-depth professional engineering services for use cases based upon the SDK packages offered, all the way to complete turnkey subsystem design services.

Handwriting technology is already embedded in millions of cars today. But the most tremendous growth for this market lies ahead in a wide range of embedded applications and IoT devices. For ISVs and OEMs, the ultimate benefit is a massively improved user experience which enhances customer satisfaction and ultimately sales and profits.


Gary-Headshot_hi_resGary Baum is the Vice President of Marketing at MyScript, the source of the most advanced award winning technology for handwriting recognition and digital ink management. At the Car HMI Concepts and Systems conference, MyScript technology was recognized in the ‘Most Innovative Car HMI Technology’ category.

Read more about the MyScript SDK and other tools for the automotive industry.

Share and Enjoy:
  • Facebook
  • Google
  • TwitThis

Tags: