AMD Targets Embedded Graphics

As the PC market flounders, AMD continues focus on embedded, this time with three (3) new GPU families.

The widescreen LCD digital sign at my doctor’s office tells me today’s date, that it’s flu season, and that various health maintenance clinics are available if only I’d sign up. I feel guilty every time.

An electronic digital sign, mostly text based. (Courtesy: Wikimedia Commons.)

An electronic digital sign, mostly text based. (Courtesy: Wikimedia Commons.)

These kind of static, text-only displays are not the kind of digital sign that GPU powerhouses like AMD are targeting. Microsoft Windows-based text running in an endless loop requires no graphics or imaging horsepower at all.

Instead, high performance is captured in those Minority Report multimedia messages that move with you across multiple screens down a hallway; the immersive Vegas-style electronic gaming machines that attract senior citizens like moths to a flame; and the portable ultrasound machine that gives a nervous mother the first images of her baby in HD. These are the kinds of embedded systems that need high-performance graphics, imaging, and encode/decode hardware.

AMD announced three new embedded graphics families, spanning low power (4 displays) ranging up to 6 displays and 1.5 TFLOPs of number crunching for high-end GPU graphics processing.

AMD announced three new embedded graphics families, spanning low power (4 displays) ranging up to 6 displays and 1.5 TFLOPs of number crunching for high-end GPU graphics processing.

Advanced Micro Devices wants you to think of their GPUs for your next embedded system.

AMD just announced a collection of three new embedded graphics processor families using 28nm process technology designed to span the gamut from multi-display and low power all the way up to a near doubling of performance at the high end.  Within each new family, AMD is looking to differentiate from the competition at both the chip- and module/board-level. Competition comes mostly from Nvidia discrete GPUs, although some Intel processors and ARM-based SoCs cross paths with AMD. As well, AMD is pushing its roadmap quickly away from previous generation 40nm GPU devices.

Comparison between AMD 40nm and 28nm embedded GPUs.

Comparison between AMD 40nm and 28nm embedded GPUs.

A Word about Form Factors

Sure, AMD’s got PC-card plug-in boards in PCI Express format—long ones, short ones, and ones with big honking heat sinks and fans and plenty of I/O connections. AMD’s high-end embedded GPUs like the new E8870 Series are available on PCIe and boast up to 1500 GFLOPs (single precision) and 12 Compute Units. They’ll drive up to 6 displays and burn up to 75W of power without an on-board fan, yet since they’re on AMD’s embedded roadmap—they’ll be around for 5 years.

An MXM (Mobile PCIe Module) format PCB containing AMD’s mid-grade E8950 GPU.

An MXM (Mobile PCIe Module) format PCB containing AMD’s mid-grade E8950 GPU.

Compared to AMD’s previous embedded E8860 Series, the E8870 has 97% more 3DMark 11 performance when running from 4GB of onboard memory. Interestingly, besides the PCIe version—which might only be considered truly “embedded” when plugged into a panel PC or thin client machine—AMD also supports the MXM format.  The E8870 will be available on the Type B Mobile PCI Express Module (MXM) that’s a mere 82mm x 105mm and complete with memory, GPU, and ancillary ICs.

Middle of the Road

For more of a true embedded experience, AMD’s E8950MXM still drives 6 displays and works with AMD’s EyeFinity capability of stitching multiple displays together in Jumbotron fashion. Yet the 3000 GFLOPs (yes, that’s 3000 GFLOPs peak, single precision) little guy still has 32 Compute Units, 8 GB of GPU memory, and is optimized for 4K (UHD) code/decoding. If embedded 4K displays are your thing, this is the GPU you need.

Hardly middle of the road, right? Depending upon the SKU, this family can burn up to 95W and is available exclusively on one of those MXM modules described above. In embedded version, the E8950 is available for 3 years (oddly, two fewer than the others).

Low Power, No Compromises

Yet not every immersive digital sign, MRI machine, or arcade console needs balls-to-the-wall graphics rendering and 6 displays. For this reason, AMD’s E6465 series focuses on low power and small form factor (SFF) footprint. Able to drive 4 displays and having a humble 2 Compute Units, the series still boasts 192 GFLOPs (single precision), 2 GB of GPU memory, 5 years of embedded life, but consumes a mere 20W.

The E6465 is available in PCIe, MXM (the smaller Type A size at 82mm x 70mm), and a multichip module. The MCM format really looks embedded, with the GPU and memory all soldered on the same MCM substrate for easier design-in onto SFFs and other board-level systems.

More Than Meets the Eye

While AMD is announcing three new embedded GPU families, it’s easy to think the story stops with the GPU itself. It doesn’t. AMD doesn’t get nearly enough recognition for the suite of graphics, imaging, and heterogeneous processing software available for these devices.

For example, in mil/aero avionics systems AMD has a few design wins in glass cockpits such as with Airbus. Some legacy mil displays don’t always follow standard refresh timing, so the new embedded GPU products support custom timing parameters. Clocks like Timing Standard, Front Porch, Refresh Rate and even Pixel Clocks are programmable—ideal for the occasional non-standard military glass cockpit.

AMD is also a strong supporter of OpenCL and OpenGL—programming and graphics languages that ease programmers’ coding efforts. They also lend themselves to creating DO-254 (hardware) and DO-178C (software) certifiable systems, such as those found in Airbus military airframes. Airbus Defence has selected AMD graphics processors for next-gen avionics displays.

Avionics glass cockpits, like this one from Airbus, are prime targets for high-end embedded graphics. AMD has a design win in one of Airbus' systems.

Avionics glass cockpits, like this one from Airbus, are prime targets for high-end embedded graphics. AMD has a design win in one of Airbus’ systems.

Finally, AMD is the founding member of the HSA Foundation, an organization that has released heterogeneous system standard (HSA) version 1.0, also designed to make programmers’ jobs way easier when using multiple dissimilar “compute engines” in the same system. Companies like ARM, Imagination, MediaTek and others are HSA Foundation supporters.

 

 

Quiz question: I’m an embedded system, but I’m not a smartphone. What am I?

In the embedded market, there are smartphones, automotive, consumer….and everything else. I’ve figured out why AMD’s G-Series SoCs fit perfectly into the “everything else”.

amd-embedded-solutions-g-series-logo-100xSince late 2013 AMD has been talking about their G-Series of Accelerated Processing Unit (APU) x86 devices that mix an Intel-compatible CPU with a discrete-class GPU and a whole pile of peripherals like USB, serial, VGA/DVI/HDMI and even ECC memory. The devices sounded pretty nifty—in either SoC flavor (“Steppe Eagle”) or without the GPU (“Crowned Eagle”). But it was a head-scratcher where they would fit. After-all, we’ve been conditioned by the smartphone market to think that any processor “SoC” that didn’t contain an ARM core wasn’t an SoC.

AMD’s Stephen Turnbull, Director of Marketing, Thin Client markets.

AMD’s Stephen Turnbull, Director of Marketing, Thin Client markets.

Yes, ARM dominates the smartphone market; no surprise there.

But there are plenty of other professional embedded markets that need CPU/GPU/peripherals where the value proposition is “Performance per dollar per Watt,” says AMD’s Stephen Turnbull, Director of Marketing, Thin Clients. In fact, AMD isn’t even targeting the smartphone market, according to General Manager Scott Aylor in his many presentations to analysts and the financial community.

AMD instead targets systems that need “visual compute”: which is any business-class embedded system that mixes computation with single- or multi-display capabilities at a “value price”. What this really means is: x86-class processing—and all the goodness associated with the Intel ecosystem—plus one or more LCDs. Even better if those LCDs are high-def, need 3D graphics or other fancy rendering, and if there’s industry-standard software being run such as OpenCL, OpenGL, or DirectX. AMD G-Series SoCs run from 6W up to 25W; the low end of this range is considered very power thrifty.

What AMD’s G-Series does best is cram an entire desktop motherboard and peripheral I/O, plus graphics card onto a single 28nm geometry SoC. Who needs this? Digital signs—where up to four LCDs make up the whole image—thin clients, casino gaming, avionics displays, point-of-sale terminals, network-attached-storage, security appliances, and oh so much more.

G-Series SoC on the top with peripheral IC for I/O on the bottom.

G-Series SoC on the top with peripheral IC for I/O on the bottom.

According to AMD’s Turnbull, the market for thin client computers is growing at 6 to 8 percent CAGR (per IDC), and “AMD commands over 50 percent share of market in thin clients.” Recent design wins with Samsung, HP and Fujitsu validate that using a G-Series SoC in the local box provides more-than-ample horsepower for data movement, encryption/decryption of central server data, and even local on-the-fly video encode/decode for Skype or multimedia streaming.

Typical use cases include government offices where all data is server-based, bank branch offices, and “even classroom learning environments, where learning labs standardize content, monitor students and centralize control of the STEM experience,” says AMD’s Turnbull.

Samsung LFDs (large format displays) use AMD R-Series APUs for flexible display features, like sending content to multiple displays via a network. (Courtesy: Samsung.)

Samsung LFDs (large format displays) use AMD APUs for flexible display features, like sending content to multiple displays via a network. (Courtesy: Samsung.)

But what about other x86 processors in these spaces? I’m thinking about various SKUs from Intel such as their recent Celeron and Pentium M offerings (which are legacy names but based on modern versions of Ivy Bridge and Haswell architectures) and various Atom flavors in both dual- and quad-core colors. According to AMD’s  published literature, G-Series SoC’s outperform dual-core Atoms by 2x (multi-display) or 3x (overall performance) running industry-standard benchmarks for standard and graphics computation.

And then there’s that on-board GPU. If AMD’s Jaguar-based CPU core isn’t enough muscle, the system can load-balance (in performance and power) to move algorithm-heavy loads to the GPU for General Purpose GPU (GPGPU) number crunching. This is the basis for AMD’s efforts to bring the Heterogeneous System Architecture (HSA) spec to the world. Even companies like TI and ARM have jumped onto this one for their own heterogeneous processors.

G-Series: more software than hardware.

G-Series: more software than hardware.

In a nutshell, after two years of reading about (and writing about) AMD’s G-Series SoCs, I’m beginning to “get religion” that the market isn’t all about smartphone processors. Countless business-class embedded systems need Intel-compatible processing, multiple high-res displays, lots of I/O, myriad industry-standard software specs…and all for a price/Watt that doesn’t break the bank.

So the answer to the question posed in the title above is simply this: I’m a visually-oriented embedded system. And I’m everywhere.

This blog was sponsored by AMD.