How Does One “Zeroize” Flash Devices?

By Chris A. Ciufo, Editor Embedded Systems Engineering

Editor’s Note: This is Part 1 of a two-part article on the topic of securely erasing data in flash devices such as memories and SSDs. In Part 2, I examine the built-in flash secure erase feature intended to eradicate sensitive data and see if it meets DoD and NIST specifications.

I was recently asked the question of how to go about “zeroizing” flash memory and SSDs. I had incorrectly assumed there was a single government specification that clearly spelled out the procedure(s). Here’s what several hours of research revealed:

DoD has no current spec that I could find besides DoD 5220.22-M “National Industrial Security Program[1]. This 2006 document prefaced by the Under Secretary of Defense cancels a previous 1995 recommendation and discusses some pretty specific procedures for handling classified information. After all, the only reason to sanitize or zeroize flash memory is to eradicate classified information like data, crypto keys, or operating programs (software). The document makes reference to media—including removable media (presumably discs, CDs and USB drives at that time)—and the need to sanitize classified data. However, I was unable to identify a procedure for sanitizing the media.

There is, however, a reference to NIST document 800-88Guidelines for Media Sanitization” published in DRAFT form in 2012. A long document that goes into extensive detail on types of media and the human chain of command on handling classified data, Appendix A provides lengthy tables on how to sanitize different media. Table A-8 deals with flash memory and lists the following steps (Figure 1):

-       Clear: 1. Overwrite the data “using organizationally approved and validated overwriting technologies/methods/tools” and at least one pass through by writing zeros into all locations. 2. Leverage the “non-enhanced” ATA Secure Erase feature built into the device, if supported.

-       Purge: 1. Use the ATA sanitize command via a) block erase and b) Cryptographic Erase (aka “sanitize crypto scramble”). One can optionally apply the block erase command after the sanitize command. 2. Apply ATA Secure Erase command, but the built-in (if available) sanitize command is preferred. 3. Use the “Cryptographic Erase through TCG Opal SSC or Enterprise SSC”—which relies on media (drives, including SSDs) that use the FIPS 140-2 self-encrypting feature.

-       Shred, Disintegrate, Pulverize, or Incinerate the device. This literally means mechanically destroy the media such that if any 1’s and 0’s remain on the floating transistor gates, it’s not possible to reconstruct these bits into useful data.

Figure 1: Recommended ways to sanitize flash media per NIST 800-88 DRAFT Rev 1 (2012).

Figure 1: Recommended ways to sanitize flash media per NIST 800-88 DRAFT Rev 1 (2012).

Of note in the NIST document is a footnote that states that Clear and Purge must each be verified. Crypto Erase only needs verification if performed prior to a Clear or Purge. In all of these cases, all procedures except for mechanical eradication rely on mechanisms built into the drive/media by the manufacturer. There is some question if this is as secure as intended and the NSA—America’s gold standard for all things crypto—has only one recommended procedure.

The NSA only allows strong encryption or mechanical shredding, as specified in “NSA/CSS Storage Device Sanitization Manual.” This 2009 document is now a bit difficult to find, perhaps because the NSA is constantly revising its Information Assurance (IA) recommendations to the changing cyberspace threats due to information warfare. Visiting the NSA website on IA requires a DoD PKI certificate per TLS 1.2 and a “current DoD Root and Intermediate Certificate Authorities (CA) loaded” into a browser. Clearly the NSA follows its own recommendations.

The manual is interesting reading in that one has only the choice to cryptographically protect the data (and the keys) and hence not worry about sanitization. Or, one can render the media (drive) completely unrecognizable with zero probability of any data remaining. By “unrecognizable,” think of an industrial shredder or an iron ore blast furnace. When it’s done, there’s nothing remaining.

Recent discussions with government users on this topic reminded me of the Hainan Island Incident in 2001 where a Chinese fighter jet attempting an intercept collided with a US Navy EP-3 SIGINT aircraft. The EP-3 was forced to make an emergency landing on China-controlled Hainan, giving unauthorized access to classified US equipment, data, algorithms and crypto keys (Figure 2). It was a harrowing experience, sadly causing the death of the Chinese pilot and the near-fatalities of the 24 Navy crew.

The crew had 26 minutes to destroy sensitive equipment and data while in the air using a fire axe, hot coffee and other methods, plus another 15 minutes on the ground, but it was widely reported to be only partially successful. While this sounds far-fetched, the topic of sanitizing data is so critical—yet so unresolved, as described above—that allegedly some current-generation equipment includes a visible “Red X” indicating exactly where an operator is to aim a bullet as a last ditch effort to mechanically sanitize equipment.

Figure 2: US Navy EP-3 SIGINT plane damaged in 2001 by collision with Chinese fighter jet. The crew did only a partial sanitization of data. (Image courtesy of and provided by Lockheed Martin Aeronautics.)

Figure 2: US Navy EP-3 SIGINT plane damaged in 2001 by collision with Chinese fighter jet. The crew did only a partial sanitization of data. (Image courtesy of and provided by Lockheed Martin Aeronautics.)

From Pulverize to Zeroize

There’s a lot of room between the DoD’s wish to have classified data and programs zeroized and the NSA’s recommendation to pulverize. The middle ground is the NIST spec listed above that relies heavily on flash memory manufacturer’s built-in secure erase options. While there are COTS recommendations for secure erase, they are driven not from a military standpoint but from the need to protect laptop information, Sarbanes-Oxley (corporate) legislation, health records per HIPAA, and financial data.

In Part 2 of this article, I’ll examine some of the COTS specifications built into ATA standards (such as Secure Erase), recommendations presented at Flash Memory Summit meetings, and raise the question of just how much trust one can place in these specifications that are essentially self-certified by the flash memory manufacturers.

[1] Previously, DoD relied on NISPOM 8-306; NSA had NSA 130-2 and NSA 9-12; Air Force had AFSSI-5020; Army had AR 380-19; and Navy had NAVSO P-5239-26. These all appear to be out of date and possibly superseded by the latest 5220.22-M. As a civilian, it’s unclear to me—perhaps a reader can shed some light?

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>