From ARM TechCon: Two Companies Proclaim IoT “Firsts” in mbed Zone

UPDATE: Blog updated 14 Dec 2015 to correct typos in ARM nomenclature. C2

Showcased at ARM’s mbed Zone, Silicon Labs and Zebra Technologies show off two IoT “Firsts”.

ARM’s mbed Zone—a huge dedicated section on the ARM TechCon 2015 exhibit floor—is the place where the hottest things for ARM’s new mbed OS are shown. ARM’s mbed is designed to make it easy to securely mesh IoT devices and their data to the cloud. Introduced at TechCon 2014 a year ago, mbed was just a concept; now it’s steps closer to reality.

Watch This!

The wearables market is one of three focus areas for ARM’s development efforts, along with Smart Cities and Smart Home. ARM’s first wearable dev platform is a smart watch worn by ARM IoT Marketing VP Zach Shelby and shown in Figure 1. It’s based on ARM’s wearables reference platform featuring mbed OS integration—with a key feature being power management APIs.

Figure 1: ARM’s smart watch development proof-of-concept, worn by ARM IoT Marketing VP Zach Shelby at ARM TechCon 2015.

Figure 1: ARM’s smart watch development proof-of-concept, worn by ARM IoT Marketing VP Zach Shelby at ARM TechCon 2015.

According to IoT MCU and sensor supplier Silicon Labs, which helped co-develop the APIs with ARM, they “provide a foundation for all peripheral interactions in mbed OS” but are designed with low power in mind and long battery life. No one wants to charge a smart watch during the day: that’s a non-starter. The APIs assure things like minimal polling or interrupts, placing peripherals in deep sleep modes, and basically wringing every power efficiency out of systems designed for long battery life. Mbed OS clearly continues ARM’s focus on low power, but emphasizes IoT ease-of-design.

In the mbed Zone, Silicon Labs was showing off their version of ARM’s smart watch which they call Thunderboard Wear. It’s blown up into demo board size and complete with Silicon Labs’ custom-designed blood pressure and ambient light sensors (Figure 2). The board is based on the company’s ARM Cortex-M3-based EFM32 Giant Gecko SoC.  Silicon Labs’ main ARM TechCon announcement—and the reason they’re in the mbed OS Zone—is that all Gecko MCUs now support mbed OS. We’ll dig into what this means technically in a future post.

Figure 2: Silicon Labs’ version of ARM’s smart watch—blown up into demo board size and complete with Cortex-M3 Giant Gecko MCU and BP sensor. The rubber straps remind that this is still “wearable”, though only sort-of.

Figure 2: Silicon Labs’ version of ARM’s smart watch—blown up into demo board size and complete with Cortex-M3 Giant Gecko MCU and BP sensor. The rubber straps remind that this is still “wearable”, though only sort-of.

P1060552

“Hello Chris”

Further proving the growing veracity of mbed OS and its ecosystem is the Zebra Technologies “wireless mbed to cloud” demo shown during Atmel’s evening reception at ARM TechCon (they’re also in the mbed Zone). Starting with Atmel’s ATSAMW25-PRO demo board plus display add-on (Figure 4) containing ARM Cortex-M3 and Cortex–M4 Atmel SoCs, Zebra demonstrated communicating directly from a console to the WiFi-equipped demo.

Figure 4: Zebra Technologies demonstrates easy wireless connectivity to IoT devices using Atmel’s SAMW25 MCU board and OLED1 expansion board.

Figure 4: Zebra Technologies demonstrates easy wireless connectivity to IoT devices using Atmel’s SAMW25 MCU board and OLED1 expansion board.

Typing “Hello Chris” into Zebra’s Zatar browser-based software console (Figure 5), the sentence appeared on the tiny display almost immediately. More than a hat trick, the demo shows the promise of the IoT, ARM cores, and the interoperability of mbed OS connected all the way back to the cloud and the Zatar device portal.

Figure 5: Zebra’s Zatar IoT cloud console dashboard.

Figure 5: Zebra’s Zatar IoT cloud console dashboard.

Zebra’s Zatar cloud service works with Renesas’s Synergy IoT platform, Freescale’s Kinetis MCU, and of course Atmel’s SoC’s (will Atmel also create their own end-to-end ecosystem?). The  Zebra “IoT Kit” demoed at TechCon is “the first mbed 3.0 Wi-FI kit that offers developers a prototype to quickly test drive IoT,” said Zebra Technologies. If you’re familiar with ARM’s mbed OS connectivity/protocol stack diagram, Zebra uses the COAP protocol to connect devices to the cloud. The company was a COAP co-developer.

The significance of the demo is multifold: quick development time using established Atmel hardware; cloud connectivity using Wi-Fi; an open-standard IoT protocol, and the solution is compliant with ARM’s latest mbed OS 3.0.

The fact that the Zatar console easily connects to multiple vendor’s processors means thousands or tens of thousands of IoT nodes can be quickly controlled, updated, and data queried with minimal effort. In short: creating wireless IoT products and using them just got a whole lot easier.

Zebra will be selling the Zebra ARM mbed IoT Kit for Zatar via distributors and more information is available on their website at www.zatar.com/IoTKit.

 

SMARC: ARM’d for a Power Play

ARM is migrating into the embedded board market, at the expense of x86 designs.

ARM is migrating into the embedded board market, at the expense of x86 designs.

In the world of multicore, it’s hard to get more cores than the quads now shipping in the latest smartphones, most of which are based upon ARM. But what about the board-level embedded market that I follow more closely?

You know it’s a foregone conclusion that ARM’s going to win the low power wars here too when even the x86 PC/104 vendors start musing about the need for ARM roadmaps.

 

WinSystems VP Bob Burckle spins a PC/104 board. The company is considering adding ARM processors to its predominantly x86-based boards.

WinSystems VP Bob Burckle spins a PC/104 board. The company is considering adding ARM processors to its predominantly x86-based boards.

In my discussion with WinSystems–a company that helps drive usually Intel-focused x86 trade consortia–Bob Burckle ponders an open standard form factor for ARM-based single board computers.  .

I’ve come to learn that ADLINK, Congatec, Kontron and others have pushed the very concept of ARM-based SBCs through the Standardization Group for Embedded Technologies (SGET) in a computer-on-module (COM) standard they’re calling Smart Mobility ARChitecture SMARC version 1.0.

Smart Mobility Architecture (SMARC) is a COM processor module ideally suited for ARM processors.

Smart Mobility Architecture (SMARC) is a COM processor module ideally suited for ARM processors. (Courtesy: Standardization Group for Embedded Technologies, SGET.org.)

It comes in 82mm x 50mm and 82mm x 80mm flavors, and Kontron is already implementing it for aircraft passenger In-Flight Entertainment systems.Figure 2 Kontron IFE plane cut-away

Look for ARM processors on PC/104, VME, COM Express…and SMARC boards soon. Choices will be from Texas Instruments, Atmel, Qualcomm, NVIDIA, Xilinx, and even AMD (which licensed the ARM for security engines in its APUs).

Kontron SMARC-sAT30 is a low profile platform based SMARC specification and integrates the 1.2 GHz NVIDIA Tegra 3 quad-core ARM processor (Cortex A9).

Kontron SMARC-sAT30 is a low profile platform based SMARC specification and integrates the 1.2 GHz NVIDIA Tegra 3 quad-core ARM processor (Cortex A9).