The Soft(ware) Core of Qualcomm’s Internet of Everything Vision

Qualcomm supplements silicon with multiple software initiatives.

Qualcomm Snapdragon
Update 1: Added attribution to figures.
The numbers are huge: 50B connected devices; 7B smartphones to be sold by 2017; 1000x growth in data traffic within a few years. Underlying all of these devices in the Internet of Things…wait, the Internet of Everything…is Qualcomm. Shipping 700 million chipsets per year on top of a wildly successful IP creation business in cellular modem algorithms, plus being arguably #1 in 3G/4G/LTE with Snapdragon SoCs in smartphones, the company is now setting its sights on M2M connectivity. Qualcomm has perhaps more initiatives in IoT/IoE than any other vendor. Increasingly, those initiatives rely on the software necessary for the global M2M-driven IoT/IoE trend to take root.

Telit Wireless Devcon
Speaking at the Telit Wireless Devcon in San Jose on 15 October, Qualcomm VP Nakul Duggal of the Mobile Computing Division painted a picture showing the many pieces of the company’s strategy for the IoT/E. Besides the aforementioned arsenal of SnapDragon SoC and Gobi modem components, the company is bringing to bear Wi-Fi, Bluetooth, local radio (like NFC), GPS, communications stacks, and a vision for heterogeneous M2M device communication they call “dynamic proximal networking”. Qualcomm supplies myriad chipsets to Telit Wireless, and Telit rolls them into higher order modules upon which Telit’s customers add end-system value.

Over 8 Telit Wireless modules are based upon Qualcomm modems.

Over eight Telit Wireless modules are based upon Qualcomm modems, as presented at the Telit Wireless Devcon 2013.

But it all needs software in order to work. Here are a few of Qualcomm’s software initiatives.

Modem’s ARM and API Open to All
Many M2M nodes–think of a vending machine, or the much maligned connected coffee maker–don’t need a lot of intelligence to function. They collect data, perform limited functions, and send analytics and diagnostics to their remote M2M masters. Qualcomm’s Duggal says that the ARM processors in Qualcomm modems are powerful enough to perform that computational load. There’s no need for an additional CPU so the company is making available Java (including Java ME), Linux and ThreadX to run their 3rd generation of Gobi LTE modems.

Qualcomm is already on its 3rd generation of Gobi LTE modems.

Qualcomm is already on its 3rd generation of Gobi LTE modems.

Qualcomm has also opened up the modem APIs and made available their IoT Connection Manager software to make it easier to write closer-to-the-metal code for modem. Duggal revealed that Qualcomm has partnered with Digi International in this effort as it applies to telematics market segments.

Leverage Smartphone Graphics
And some of those M2M devices on the IoE may have displays–simple UIs at first (like a vending machine)—but increasingly more complex as the device interacts with the consumer. A restaurant’s digital menu sign, for example, need not run a full blown PC and Windows Embedded operating system when a version of a Snapdragon SoC will do. After all, the 1080p HDMI graphics needs of an HTC One with S600 far outweigh those of a digital sign. Qualcomm’s graphics accelerators and signal processing algorithms can easily apply to display-enabled M2M devices. This applies doubly as more intelligence is pushed to the M2M node, alleviating the need to send reams of data up to the cloud for processing.

Digital 6th Sense: Context
Another area Duggal described as the “Digital 6th Sense” might be thought of as contextual computing. Smartphones or wearable fitness devices like Nike’s new FuelBand SE might react differently when they’re outside, at work, or in the home. More than just counting steps and communicating with an App, if the device knows where it is…including precisely where it is inside of a building…it can perform different functions. Qualcomm now includes the Atheros full RF spectrum of products including Bluetooth, Bluetooth LE, NFC, Wi-Fi and more. Software stacks for all of these enable connectivity, but code that meshes (no pun) Wi-Fi with GPS data provides outside and inside position information. Here, Qualcomm’s software melds myriad infrastructure technologies to provide inside positioning. A partnership with Cisco will bring the technology to consumer locations like shopping malls to coexist with Cisco’s Mobility Services Engine for location-based Apps.

Smart Start at Home
Finally, the smart home is another area ripe for innovation. Connected devices in the home range from the existing set-top box for entertainment, to that connected coffee pot, smart meter, Wi-Fi enabled Next thermostat and smoke/CO detector, home health and more. These disparate ecosystems, says Duggal, are similar only in their “heterogeneousness” in the home. That is: they were never designed to be interconnected. Qualcomm is taking their relationships with every smart meter manufacturer, their home gateway/backhaul designs, and their smartphone expertise, and rolling it into the new AllJoyn software effort.

The open source AllJoyn initiative, spearheaded by Qualcomm, seeks to connect heterogeneous M2M nodes. Think: STB talks to thermostat, or refrigerator talks to garage door opener.

The open source AllJoyn initiative, spearheaded by Qualcomm, seeks to connect heterogeneous M2M nodes. Think: STB talks to thermostat, or refrigerator talks to garage door opener. Courtesy: Qualcomm and AllJoyn.org .

AllJoyn is an open source project that seeks to set a “common language for the Internet of Everything”. According to AllJoyn.org, the “dynamic proximal network” is created using a universal software framework that’s extremely lightweight. Qualcomm’s Duggal described the ability for a device to enumerate that it has a sensor, audio, display, or other I/O. Most importantly, Alljoyn is “bearer agnostic” across all leading OSes or connectivity mechanism.

AllJoyn connectivity diagram.

AllJoyn connectivity diagram. Courtesy: www.alljoyn.org .

If Qualcomm is to realize their vision of selling more modems and Snapdragon-like SoCs, making them play well together and exchange information is critical. AllJoyn is pretty new; a new Standard Client (3.4.0) was released on 9 October. It’s unclear to me right now how AllJoyn compares with Wind River’s MQTT-based M2M Intelligent Device Platform or Digi’s iDigi Cloud or Eurotech’s EveryWhere Device Framework.

Qualcomm’s on a Roll
With their leadership in RF modems and smartphone processors, Qualcomm is laser focused on the next big opportunity: the IoT/E. Making all of those M2M nodes actually do something useful will require software throughout the connected network. With so many software initiatives underway, Qualcomm is betting on their next big thing: the Internet of Everything. Software will be the company’s next major “killer app”.

PCI-SIG “nificant” Changes Brewing in Mobile

PCI-SIG Developers Conference, June 25, 2013, Santa Clara, CA

Of five significant PCI Express announcements made at this week’s PCI-SIG Developers Conference, two are aimed at mobile embedded.

From PCI to PCI Express to Gen3 speeds, the PCI-SIG is one industry consortium that lets no grass grow for long. As the embedded, enterprise and server industries roll out PCIe Gen3 and 40G/100G Ethernet, the PCI-SIG and its key constituents like Cadence, Synopsis, LeCroy and others are readying for another speed doubling to 16 GT/s (giga transfers/second) by 2015. The PCIe 4.0 next step evolves bandwidth to 16Gb/s or a whopping 64 GB/s (big “B”) total lane bandwidth in x16 width. PCIe 4.0 Rev 0.5 will be available Q1 2014 with Rev 0.9 targeted for Q1 2015.

Table of major PCI-SIG announcements at Developers Conference 2013

Table of major PCI-SIG announcements at Developers Conference 2013

Yet as “SIG-nificant” as this announcement is, PCI-SIG president Al Yanes said it’s only one of five major news items. The others include: a PCIe 3.1 specification that consolidates a series of ECNs in the areas of power, performance and functionality; PCIe Outside the Box which uses a 1-3 meter “really cheap” copper cable called PCIe OCuLink with an 8G bit rate; plus two embedded and mobile announcements that I’m particularly enthused about. Refer to the table for a snapshot.

New M.2 Specification

The new M.2 specification is a small, mobile embedded form factor designed to replace the previous “Mini PCI” in Mini Card and Half Mini Card sizes. The newer, as-yet-publicly-unreleased M.2 card will be smaller in size and volume but is intended to provide scalable PCIe performance to allow designers to tune SWaP and I/O requirements. PCI-SIG marketing workgroup chair Ramin Neshati told me that M.2 is part of the PCI-SIG’s increased focus on mobile.

The scalable M.2 card is designed as an I/O plug in for Bluetooth, Wi-Fi, WAN/cellular, SSD and other connectivity in platforms including ultrabook, tablet, and “maybe even smartphone,” said Neshati. At Rev 0.7 now, Rev 0.9 will be released soon and the final (Rev 1.0?) spec will become public by Q4 2013.

PCI-SIG M.2 card form factor

The PCI-SIG’s impending M.2 form factor is designed for mobile embedded ultrabooks, tablets, and possibly smartphones. The card will have a scalable PCIe interface and is designed for Wi-Fi, Bluetooth, cellular, SSD and more. (Courtesy: PCI-SIG.)

Mobile PCIe (M-PCIe)

Seeing the momentum in mobile and the interest in a PCIe on-board interconnect lead the PCI-SIG to work with the MIPI Alliance and create Mobile PCI Express: M-PCIe. The specification is now available to PCI-SIG members and creates an “adapted PCIe architecture” bridge between regular PCIe and MIPI M-PHY.

The Mobile PCI Express (M-PCIe) specification targets mobile embedded devices like smartphones to provide high-speed, on-board PCIe connectivity. (Courtesy: PCI-SIG.)

The Mobile PCI Express (M-PCIe) specification targets mobile embedded devices like smartphones to provide high-speed, on-board PCIe connectivity. (Courtesy: PCI-SIG.)

Using the MIPI M-PHY physical layer allows smartphone and mobile designers to stick with one consistent user interface across multiple platforms, including already-existing OS drivers. PCIe support is “baked into Windows, iOS, Android,” and others, says PCI-SIG’s Neshati.  PCI Express also has a major advantage when it comes to interoperability testing, which runs from the protocol stack all the way down to the electrical interfaces. Taken collectively, PCIe brings huge functionality and compliance benefits to the mobile space.

M-PCIe supports MIPI’s Gear 1 (1.25-1.45 Gbps), Gear 2 (2.5-2.9 Gbps) and Gear 3 (5.0-5.8 Gbps) speeds. As well, the M-PCIe spec provides power optimization for short channel mobile platforms, primarily aimed at WWAN front end radios, modem IP blocks, and possibly replacing MIPI’s own universal file storage UFS mass storage interface (administered by JEDEC).

M-PCIe by the PCI-SIG can be used in multiple high speed paths in a smartphone mobile device. (Courtesy: PCI-SIG and MIPI Alliance.)

M-PCIe by the PCI-SIG can be used in multiple high speed paths in a smartphone mobile device. (Courtesy: PCI-SIG and MIPI Alliance.)

PCI Express Ready for More

More information on these five announcements will be rolling out soon. But it’s clear that the PCI-SIG sees mobile and embedded as the next target areas for PCI Express in the post-PC era, while still not abandoning the standard’s bread and butter in PCs and high-end/high-performance servers.