Intel Changes Course–And What a Change!

By Chris A. Ciufo, Editor, Embedded Intel Solutions

5 bullets explain Intel’s recent drastic course correction.

Intel CEO Brian Krzanich (Photo by author, IDF 2015.)

Intel CEO Brian Krzanich (Photo by author, IDF 2015.)

I recently opined on the amazing technology gifts Intel has given the embedded industry as the company approaches its 50th anniversary. Yet a few weeks later, the company released downward financials and announced layoffs, restructurings, executive changes and new strategies. Here are five key points from the recent news-storm of (mostly) negative coverage.

1. Layoffs.

Within days of the poor financial news, Intel CEO Brian Krzanich (“BK”) announced that 12,000 loyal employees would have to go. As the event unfolded over a few days, the pain was felt throughout Intel: from the Oregon facility where its IoT Intelligent Gateway strategy resides, to its design facilities in Israel and Ireland, to older fabs in places like New Mexico. Friends of mine at Intel have either been let go or are afraid for their jobs. This is the part about tech—and it’s not limited to Intel, mind you—that I hate the most. Sometimes it feels like a sweatshop where workers are treated poorly. (Check out the recent story concerning BiTMICRO Networks, which really did treat its workers poorly.)

2. Atom family: on its way out. 

This story broke late on the Friday night after the financial news—it was almost as if the company hadn’t planned on talking about it so quickly. But the bottom line is that the Atom never achieved all the goals Intel set out for it: lower price, lower power and a spot in handheld. Of course, much is written about Intel’s failure to wrest more than a token slice out of ARM’s hegemony in mobile. (BTW: that term “hegemony” used to be applied to Intel’s dominance in PCs. Sigh.) Details are still scant, but the current Atom Bay Trail architecture works very nicely, and I love my Atom-based Win8.1 Asus 2:1 with it. But the next Atom iteration (Apollo Lake) looks like the end of the line. Versions of Atom may live on under other names like Celeron and Pentium (though some of these may also be Haswell or Skylake versions).

3. New pillars announced.

Intel used to use the term “pillars” for its technology areas, and BK has gone to great lengths to list the new ones as: Data Center (aka: Xeon); Memory (aka: Flash SSDs and the Optane, 3D XPoint Intel/Micro joint venture); FPGAs (aka: Altera, eventually applied to Xeon co-accelerators); IoT (aka: what Intel used to call embedded); and 5G (a modem technology the company doesn’t really have yet). Mash-ups of these pillars include some of the use cases Intel is showing off today, such as wearables, medical, drones (apparently a personal favorite of BK), RealSense camera, and smart automobiles including self-driving cars. (Disclosure: I contracted to Intel in 2013 pertaining to the automotive market.)

 Intel’s new pillars, according to CEO Brian Krzanich. 5G modems are included in “Connectivity.” Not shown is “Moore’s Law,” which Intel must continue to push to be competitive.

Intel’s new pillars, according to CEO Brian Krzanich. 5G modems are included in “Connectivity.” Not shown is “Moore’s Law,” which Intel must continue to push to be competitive.

4. Tick-tock goodbye.

For many years, Intel has set the benchmark for process technology and made damn sure Moore’s Law was followed. The company’s cadence of new architecture (Tock) followed by process shrink (Tick) predictably streamed products that found their way into PCs, laptops, the data center (now “cloud” and soon “fog”). But as Intel approached 22nm, it got harder and harder to keep up the pace as CMOS channel dimensions approached Angstroms (inter-atomic distances). The company has now officially retired Tick-Tock in favor of a three-step process of Architecture, Process, and Process tuning. This is in fact where the company is today as the Core series evolved from 4th-gen (Haswell) to 5th-gen (Broadwell—a sort-of interim step) to the recent 6th-gen (Skylake). Skylake is officially a “Tock,” but if you work backwards, it’s kind of a fine-tuned process improvement with new features such as really good graphics, although AnandTech and others lauded Broadwell’s graphics. The next product—Kaby Lake (just “leaked” last week, go figure)—looks to be another process tweak. Now-public specs point to even better graphics, if the data can be believed.

Intel is arguably the industry’s largest software developer, and second only to Google when it comes to Android. (Photo by author, IDF 2015.)

Intel is arguably the industry’s largest software developer, and second only to Google when it comes to Android. (Photo by author, IDF 2015.)

5. Embedded, MCUs, and Value-Add.

This last bullet is my prediction of how Intel is going to climb back out of the rut. Over the years the company mimicked AMD and nearly singularly focused on selling x86 CPUs and variants (though it worked tirelessly on software like PCIe, WiDi, Android, USB Type-C and much more). It jettisoned value-add MCUs like the then-popular 80196 16-bitter with A/D and 8751EPROM-based MCU—conceding all of these products to companies like Renesas (Hitachi), Microchip (PIC series), and Freescale (ARM and Power-based MCUs, originally for automotive). Yet Intel can combine scads of its technology—including modems, WiFi (think: Centrino), PCIe, and USB)—into intelligent peripherals for IoT end nodes. Moreover, the company’s software arsenal even beats IBM (I’ll wager) and Intel can apply the x86 code base and tool set to dozens of new products. Or, they could just buy Microchip or Renesas or Cypress.

It pains me to see Intel layoff people, retrench, and appear to fumble around. I actually do think it is shot-gunning things just a bit right now, and officially giving up on developing low-power products for smartphones. Yet they’ll need low power for IoT nodes, too, and I don’t know that Quark and Curie are going to cut it. Still: I have faith. BK is hell-fire-brimstone motivated, and the company is anything but stupid. Time to pick a few paths and stay the course.

What’s the Nucleus of Mentor’s Push into Industrial Automation?

Mentor’s once nearly-orphaned Nucleus RT forms the foundation of a darned impressive software suite for controlling meat packing or nuclear power plants.

GlassesEveryone appreciates an underdog—the pale, wimpy kid with glasses and brown polyester sweater who gets routinely beaten up by the popular boys—but sticks it out day after day and eventually grows up to create a tech start-up everyone loves. (Part of this story is my personal history; I’ll let you guess which part.)

So it is with Mentor’s Nucleus RTOS, which the company announced forms the basis for the recent initiative into Industrial Automation (I.A.). Announced this week at the ARC Industry Forum in Orlando is Mentor’s “Embedded Solution for Industrial Automation” (Figure 1).  A cynic might look at this figure as a collection of existing Mentor products…slightly rearranged to make a compelling argument for a “solution” in the I.A. space.  That skinny kid Nucleus is right there, listed on the diagram. Oh, how many times have I asked Mentor why they keep Nucleus around only to get beaten up by the big RTOS kids!

Figure 1: Mentor’s Industrial Automation Solution for embedded, IoT-enabled systems relies on the Nucleus RTOS, including a secure hypervisor and enhanced security infrastructure.

Figure 1: Mentor’s Industrial Automation Solution for embedded, IoT-enabled systems relies on the Nucleus RTOS, including a secure hypervisor and enhanced security infrastructure. 

After all, you’ll recognize Mentor’s Embedded Linux, the Nucleus RTOS I just mentioned, and the company’s Sourcery debug/analyzer/IDE product suite. All of these have been around for a while, although Nucleus is the grown-up kid in this bunch. (Pop quiz: True or False…Did all three of these products came from Mentor acquisitions? Bonus question: From what company(ies)?)

Into this mix, Mentor is adding new security tools from our friends at Icon Labs, plus hooks to a hot new automation GUI/HMI called Qt. (Full disclosure: Icon Labs founder Alan Grau is one of our security bloggers; however, we were taken by surprise at this recent Mentor announcement!)

Industry 4.0: I.A. meets IoT

According to Mentor’s Director of Product Management for Runtime Solutions, Warren Kurisu (whose last name is pronounced just like my first name in Japanese: Ku-ri-su), I.A. is gaining traction, big time. There’s a term for it: “Industry 4.0”. The large industrial automation vendors—like GE, Siemens, Schneider Electric, and others—have long been collecting factory data and feeding it into the enterprise, seeking to reduce costs, increase efficiency, and tie systems into the supply chain. Today, we call this concept the Internet of Things (IoT) and Industry 4.0 is basically the promise of interoperability between currently bespoke (and proprietary) I.A. systems with smart, connected IoT devices plus a layer of cyber security thrown in.

Mentor’s Kurisu points out that what’s changed is not only the kinds of devices that will connect into I.A. systems, but how they’ll connect in more ways than via serial SCADA or FieldBus links. Industrial automation will soon include all the IoT pipes we’re reading about: Wi-Fi, Bluetooth LE, various mesh topologies, Ethernet, cellular—basically whatever works and is secure.

The Skinny Kid Prevails

Herein lies the secret of Mentor’s Industrial Automation Solution. It just so happens the company has most of what you’d need to connect legacy I.A. systems to the IoT, plus add new kinds of smart embedded sensors into the mix. What’s driving the whole market is cost. According to a recent ARC survey, reduced downtime, improved process performance, reduced  machine lifecycle costs—all of these, and more, are leading I.A. customers and vendors to upgrade their factories and systems.

Additionally, says Mentor’s Kurisu, having the ability to consolidate multiple pieces of equipment, reduce power, improve safety, and add more local, operator-friendly graphics are criteria for investing in new equipment, sensors, and systems.

Mentor brings something to the party in each of these areas:

- machine or system convergence, either by improved system performance or reduced footprint

- capabilities and differentiation, allowing I.A. vendors to create systems different from “the other guys”

- faster time-to-money, done through increased productivity, system design and debug, or anything to reduce the I.A. vendor’s and their customer’s efforts.

Graphic - Industrial Automation Flow

Figure 2: Industrial automation a la Mentor. The embedded pieces rely on Nucleus RTOS, or variations thereof. New Qt software for automation GUI’s plus security gateways from Icon Labs bring security and IoT into legacy I.A. installations.

Figure 2 sums up the Mentor value proposition, but notice how most of the non-enterprise blocks in the diagram are built upon the Nucleus RTOS.

Nucleus, for example, has achieved safety certification by TÜV SÜD complete with artifacts (called Nucleus SafetyCert). Mentor’s Embedded Hypervisor—a foundational component of some versions of Nucleus—can be used to create a secure partitioned environment for either multicore or multiple processors (heterogeneous or homogeneous), in which to run multiple operating systems which won’t cross-pollute in the event of a virus or other event.

New to the Mentor offering is an industry-standard Qt GUI running on Linux, or Qt optimized for embedded instantiations running on—wait for it—Nucleus RTOS. Memory and other performance optimizations reduce the footprint, boot faster, and there are versions now for popular IoT processors such as ARM’s Cortex-Mx cores.

Playground Victory: The Take-away

So if the next step in Industrial Automation is Industry 4.0—the rapid build-out of industrial systems reducing cost, adding IoT capabilities with secure interoperability—then Mentor has a pretty compelling offering. That consolidation and emphasis on low power I mentioned above can be had for free via capabilities already build into Nucleus.

For example, embedded systems based on Nucleus can intelligently turn off I/O and displays and even rapidly drive multicore processors into their deepest sleep modes. One example explained to me by Mentor’s Kurisu showed an ARM-based big.LITTLE system that ramped performance when needed but kept the power to a minimum. This is possible, in part, by Mentor’s power-aware drivers for an entire embedded I.A. system under the control of Nucleus.

And  in the happy ending we all hope for, it looks like the maybe-forgotten Nucleus RTOS—so often ignored by editors like me writing glowingly about Wind River’s VxWorks or Green Hill’s INTEGRITY—well, maybe Nucleus has grown up.  It’s the RTOS ready to run the factory of the future. Perhaps your electricity is right now generated under the control of the nerdy little RTOS that made it big.

Some insight into Altera’s Stratix 10 plans

Hint: Intel’s 14nm tri-gate (FinFET) process is at the core (no pun) of Altera’s recipe, but architecture and software tools round out new FPGA family plans.

Figure 5 Altera SoC roadmap (PNG)First to announce plans for a quad-core ARM Cortex A53-based SoC FPGA, Altera will rely on their Intel fab exclusivity to provide what an Altera spokesman called “unimaginable performance”. One of the titans in the FPGA market (the other is Xilinx), Altera has been slowly opening the curtain on their roadmap plans.

I’ve been following and reporting on Altera’s announcements, acquisitions, and possible strategies for the last 12 months. Now, all is revealed in the company’s Stratix 10 technology announcement. An in-depth report (with links) is available here.

Editor’s note: While Altera is announcing their technology plans, Xilinx announced new 20nm devices in Virtex and Kintex UltraScale devices. Our in-depth report on Xilinx will follow shortly.  C. Ciufo, editor.

Intel’s Atom Roadmap Makes Smartphone Headway

After being blasted by users and pundits over the lack of “low power” in the Atom product line, new architecture and design wins show Intel’s making progress.

Intel EVP Dadi Permutter revealing early convertible tablet computer at IDF2012.

Intel EVP Dadi Permutter revealing early convertible tablet computer at IDF2012.

A 10-second Google search on “Intel AND smartphone” reveals endless pundit comments on how Intel hasn’t been winning enough in the low power, smartphone and tablet markets.  Business publications wax endlessly on the need for Intel’s new CEO Brian Krzanich to make major changes in company strategy, direction, and executive management in order to decisively win in the portable market. Indications are that Krzanich is shaking things up, and pronto.

Forecasts by IDC (June 2013) and reported by CNET.com (http://news.cnet.com/8301-1035_3-57588471-94/shipments-of-smartphones-tablets-and-oh-yes-pcs-to-top-1.7b/) peg the PC+smartphone+tablet TAM at 1.7B units by 2014, of which 82 percent (1.4B units, $500M USD) are low power tablets and smart phones. And until recently, I’ve counted only six or so public wins for Intel devices in this market (all based upon the Atom Medfield SoC with Saltwell ISA I wrote about at IDF 2012). Not nearly enough for the company to remain the market leader while capitalizing on its world-leading tri-gate 3D fab technology.

Behold the Atom, Again

Fortunately, things are starting to change quickly. In June, Samsung announced that the Galaxy Tab 3 10.1-inch SKU would be powered by Intel’s Z2560 “Clover Trail+” Atom SoC running at 1.2GHz.  According to PC Magazine, “it’ll be the first Intel Android device released in the U.S.” (http://www.pcmag.com/article2/0,2817,2420726,00.asp)and it complements other Galaxy Tab 3 offerings with competing processors. The 7-inch SKU uses a dual-core Marvell chip running Android 4.1, while the 8-inch SKU uses Samsung’s own Exynos dual-core Cortex-A9 ARM chip running Android 4.2. The Atom Z2560 also runs Android 4.2 on the 10.1-incher. Too bad Intel couldn’t have won all three sockets, especially since Intel’s previous lack of LTE cellular support has been solved by the company’s new XMM 7160 4G LTE chip, and supplemented by new GPS/GNSS silicon and IP from Intel’s ST-Ericsson navigation chip acquisition.

The Z2560 Samsung chose is one of three “Clover Trail+” platform SKUs (Z2760, Z2580, Z2560) formerly known merely as “Cloverview” when the dual-core, Saltwell-based, 32-nm Atom SoCs were leaked in Fall 2012. The Intel alphabet soup starts getting confusing because the Atom roadmap looks like rush hour traffic feeding out of Boston’s Sumner tunnel. It’s being pushed into netbooks (for maybe another quarter or two); value laptops and convertible tablets as standalone CPUs; smartphones and tablets as SoCs; and soon into the data center to compete against ARM’s onslaught there, too.

Clover Trail+ replaces Intel’s Medfield smartphone offering and was announced at February’s MWC 2013. According to Anandtech.com (thank you, guys!) Intel’s aforementioned design wins with Atom used the 32nm Medfield SoC for smartphones. Clover Trail is still at 32nm using the Saltwell microarchitecture but has targeted Windows 8 tablets, while Clover Trail+ targets only smartphones and non-Windows Tablets. That explains the Samsung Galaxy Tab 3 10.1-inch design win. The datasheet for Clover Trail+ is here, and shows a dual-core SoC with multiple video CODECs, integrated 2D/3D graphics, on-board crypto, multiple multimedia engines such as Intel Smart Sound, and it’s optimized for Android and presumably, Intel/Samsung’s very own HTML5-based Tizen OS (Figure 1).

Figure 1: Intel Clover Trail+ block diagram used in the Atom Z2580, Z2560, and Z2520 smartphone SoCs. This is 32nm geometry based upon the Saltwell microarchitecture and replaces the previous Medfield single core SoC. (Courtesy: Intel.)

Figure 1: Intel Clover Trail+ block diagram used in the Atom Z2580, Z2560, and Z2520 smartphone SoCs. This is 32nm geometry based upon the Saltwell microarchitecture and replaces the previous Medfield single core SoC. (Courtesy: Intel.)

I was unable to find meaningful power consumption numbers for Clover Trail+, but it’s 32nm geometry compares favorably to ARM’s Cortex-A15 28nm geometry so Intel should be in the ballpark (vs Medfield’s 45nm). Still, the market wonders if Intel finally has the chops to compete. At least it’s getting much, much closer–especially once the on-board graphics performance gets factored into the picture compared to ARM’s lack thereof (for now).

Silvermont and Bay Trail and…Many More Too Hard to Remember

But Intel knows they’ve got more work to do to compete against Qualcomm’s home-grown Krait ARM-based ISA, some nVidia offerings, and Samsung’s own in-house designs. Atom will soon be moving to 22nm and the next microarchitecture is called Silvermont. Intel is finally putting power curves up on the screen, and at product launch I’m hopeful there will be actual Watt numbers shown, too.

For example, Intel is showing off Silvermont’s “industry-leading performance-per-Watt efficiency” (Figure 2). Press data from Intel says the architecture will offer 3x peak performance, or 5x lower power compared to the Clover Trail+ Saltwell microarchitecture. More code names to track: the quad-core Bay Trail SoC for 2013 holiday tablets; Merrifield with increased performance and battery life; and finally Avoton that provides 64-bit energy efficiency for micro servers and boasts ECC, Intel VT and possibly vPro and other security features. Avoton will go head-to-head with ARM in the data center where Intel can’t afford to lose any ground.

Figure 2: The 22nm Atom microarchitecture called Silvermont will appear in Bay Trail, Avoton and other future Atom SoCs from "Device to Data Center", says Intel. (Courtesy: Intel.)

Figure 2: The 22nm Atom microarchitecture called Silvermont will appear in Bay Trail, Avoton and other future Atom SoCs from “Device to Data Center”, says Intel. (Courtesy: Intel.)

Oh Yeah? Who’s Faster Now?

As Intel steps up its game because it has to win or else, the competition is not sitting still. ARM licensees have begun shipping big.LITTLE SoCs, and the company has announced new graphics, DSP, and mid-range cores. (Read Jeff Bier and BDTi’s excellent recent ARM roadmap overview here.)

A recent report by ABI Research (June 2013) tantalized (or more appropriately galvanized) the embedded and smartphone markets with the headline “Intel Apps Processor Outperforms NVIDA, Qualcomm, Samsung”. In comparison tests, ABI Research VP of engineering Jim Mielke noted that that Intel Atom Z2580  ”not only outperformed the competition in performance but it did so with up to half the current drain.”

The embedded market didn’t necessarily agree with the results, and UBM Tech/EETimes published extensive readers’ comments with colorful opinions.  On a more objective note, Qualcomm launched its own salvo as we went to press, predicting “you’ll see a whole bunch of tablets based upon the Snapdragon 800 in the market this year,” said Raj Talluri, SVP at Qualcomm, as reported by Bloomberg Businessweek.

Qualcomm  has made its Snapdragon product line more user-friendly and appears to be readying the line for general embedded market sales in Snapdragon 200, 400, 600, and “premium” 800 SKU versions. The company has made available development tools (mydragonboard.org/dev-tools) and is selling COM-like Dragonboard modules through partners such as Intrinsyc.

Intel Still Inside

It’s looking like a sure thing that Intel will finally have competitive silicon to challenge ARM-based SoCs in the market that really matters: mobile, portable, and handheld. 22nm Atom offerings are getting power-competitive, and the game will change to an overall system integration and software efficiency exercise.

Intel has for the past five years been emphasizing a holistic all-system view of power and performance. Their work with Microsoft has wrung out inefficiencies in Windows and capitalizes on microarchitecture advantages in desktop Ivy Bridge and Haswell CPUs. Security is becoming important in all markets, and Intel is already there with built-in hardware, firmware, and software (through McAfee and Wind River) advantages. So too has the company radically improved graphics performance in Haswell and Clover Trail+ Atom SoCs…maybe not to the level of AMD’s APUs, but absolutely competitive with most ARM-based competitors.

And finally, Intel has hedged its bets in Android and HTML5. They are on record as writing more Android code (for and with Google) than any other company, and they’ve migrated past MeeGo failures to the might-be-successful HTML5-based Tizen OS which Samsung is using in select handsets.

As I’ve said many times, Intel may be slow to get it…but it’s never good to bet against them in the long run. We’ll have to see how this plays out.

Intel vs GM: What’s In Store for Intel’s New CEO, President

Today chip giant Intel announced outgoing CEO Paul Otellini’s replacement: he’s Brian Krzanich, former Intel COO and likely an Intel lifer. As Otellini bids goodbye at the annual stockholders’ meeting on May 16, Krzanich moves in as the company’s sixth CEO since founding.

Intel's CEO-elect, former COO Brian Krzanich

Intel’s CEO-elect, former COO Brian Krzanich

Krzanich (52) is about my age and has been with the company since 1982. Although I didn’t do a resume search on the man, I’ll bet he joined Intel shortly after college and has been there his whole career. That worries me: not because of his skill set which is undoubtedly exemplary, but because Intel’s challenges in the post-PC era are so acute that they need an outsider’s view of things, despite having so many awesome technology advantages.

The Intel Advantage, as shown at IDF 2012, includes hardware, software, partnerships, and a killer ecosystem.

The Intel Advantage, as shown at IDF 2012, includes hardware, software, partnerships, and a killer ecosystem.

Using GM as a warning example, all those years of “Roger and Me” insider management bred complacency, NIH, and too much familiarity at GM. It’s only now, post TARP government bailout that General Motors is getting into fighting trim again (although the European Opel division admittedly remains an anomaly).

One of Intel's many IC announcements at IDF 2012, preparing for Haswell.

One of Intel’s many IC announcements at IDF 2012, preparing for Haswell.

Still, I’m a big fan of Intel and I routinely write glowing articles about the company’s incredible Core i5/i7 CPUs, limited successes in smartphones, OSes like Tizen, or broad initiatives like HTML5 in IVI automotive. But they’ve missed the boat on embedded, are playing catch-up in smartphones, and have yet to publicly unveil a low power processor roadmap that’s comparable to ARM. Even on-the-ropes AMD has doubled down in embedded by announcing at DESIGN West new APU SoCs (x86 CPU + Radeon GPU + Southbridge peripherals).

Renee James becomes Prez

Intel's new president Renee James, shown here at IDF 2012 wowing the crowd with new software ecosystem announcements.

Intel’s new president Renee James, shown here at IDF 2012 wowing the crowd with new software ecosystem announcements.

As Intel made public their new CEO, the announcement also said that Renee James becomes the company’s president. Ms. James has run the company’s huge (and growing) software group and also oversees the McAfee and Wind River subsidiaries. I like Renee a lot and am pleased at the many successes unveiled under her leadership: Yocto, Tizen, HTML5, third party programs, multicore development tools, and so on. Clearly she understands that complex hardware like Core i7 CPUs needs equally sophisticated software. One tiny successful example is how Intel and Microsoft are working together to wring more power savings out of Windows machines.

So in Renee I am confident; in Mr. Krzanich I have high hopes that he’ll break the trend of predictable Intel behavior and instead act like an outsider and do what’s necessary. That is: shake things up by recognizing the market is embedded, the competition is ARM, and that Intel needs to get cracking. On both fronts, Intel has a bit of catching up to do.

Like today’s General Motors, Intel is extremely credible and very capable of pulling a hat trick. Their process technology is second to none (ask Altera), all the IC and hardware designers I’ve ever met are brilliant, and the company has tons of software IP on which to build a winning strategy and embedded product portfolio.

1960 Chevrolet Corvair. (Courtesy: Wikimedia Commons; http://en.wikipedia.org/wiki/File:1960_Chevrolet_Corvair.JPG)

1960 Chevrolet Corvair. (Courtesy: Wikimedia Commons; http://en.wikipedia.org/wiki/File:1960_Chevrolet_Corvair.JPG)

Intel will win if they ditch a few “unsafe at any speed” Corvairs and give the market what it really wants: another 1969 Z28 (in yellow with 4-wheel discs, thank you). I’ll instead take my next smartphone with Intel SoC in SS Trim and Nokia yellow.

AMD’s Single Chip Embedded SoC: Upward and to the Right

Monolithic AMD embedded G Series SoCs combine x86 multicore, Radeon graphics, and a Southbridge. It’s one-stop-shopping, and it’s a flood targeting Intel again.

AMD arrow logoThe little arrow-like “a” AMD logo once represented an “upward and to right” growth strategy, back in the 1980s as the company was striving for $1.0B and I worked there just out of university.

In 2013, AMD is focusing on the embedded market with a vengeance and it’s “upward and to the right” again. The stated target is for AMD to grow embedded revenues from 5% in Q3 2012 to 20% of the total by Q4 2013. Wow. I’m excited about the company’s prospects, though I know they’ve had decades of false starts or technology successes that were later to sold off in favor of their personal war with Intel for PC dominance. (Flash memories and Vantis? The first DSP telephone modem Am7910? Telecom line cards? Alchemy “StrongMIPS”? All gone.)

Know what? PCs are in the tank right now, embedded is the market, and AMD might just be better positioned than Intel. They’re certainly saying all the right things. Take this week’s DESIGN West announcement of the new embedded G Series “SoCs”. Two years ago AMD invented the term Accelerated Processing Unit (APU) as a differentiated x86 CPU with an ATI GPU.

An AMD Accelerated Processing Unit merges a multicore x86 CPU with a Radeon GPU.

An AMD Accelerated Processing Unit merges a multicore x86 CPU with a Radeon GPU.

This week’s news is how the APU mind-melds with all of the traditional x86 Southbridge I/O to become a System-on-Chip (SoC).

The AMD G Series “SoC” does more real estate slight-of-hand by eliminating the Southbridge to bring all peripherals on-board the APU.

The AMD G Series “SoC” does more real estate slight-of-hand by eliminating the Southbridge to bring all peripherals on-board the APU.

The G Series SoCs meld AMD’s latest 28 nm quad-core “Jaguar” with the ATI Radeon 8000 series GPU and claim a 113 percent CPU and 20 percent GPU performance jump. More importantly, the single-chip SoC concept reduces footprint by 33 percent by eliminating a whole IC. On-board peripherals are HDMI/DVI/LVDS/VGA, PCIe, USB 2.0/3.0, SATA 2.x/3.x, SPI, SD card reader interface, and more. You know, the kind of stuff you’d expect in an all-in-one.

Available in 2- and 4-core flavors, the G Series SoC saves up to 33% board real estate, and even drives dual displays and high-res.

Available in 2- and 4-core flavors, the G Series SoC saves up to 33% board real estate, and even drives dual displays and high-res.

AMD is clearly setting their sites on embedded, and Intel is once again in the crosshairs. The company claims a 3x (218 percent) overall performance advantage with the GX-415GA SKU (quad core, 1.5 GHz, 2 MB L2) over Intel’s Atom D525 running Sandra Engineering 2011 Dhrystone ALU, Sandra Engineering 2011 Whetstone iSSE3, and other benchmarks such as those from EEMBC. Although AMD’s talking trash about the Atom, they’re disclosing all of their benchmarks, the hardware they were run on, and the OS assumptions. (The only thing that maybe seems hinky to me is that the respective motherboards use 4 GB DRAM (AMD) versus 1 GB DRAM (Intel).)

AMD CPU performance graph 1

And then there’s the built-in ECC which targets critical applications such as military, medical, financial, and casino gaming. The single-chip SoC is also designed ground-up to run -40 to +85C (operation) and will fit the bill in many rugged, defense, and medical applications requiring really good horsepower and graphics performance. Fan-less designs are the sweet spot with a 9W to 25W TDP, with all I/O’s blazing. Your mileage may vary, and AMD claims a much-better-than-Intel Performance-per-Watt number of 19 vs 9 as shown below. There are more family members to follow, some with sub 9W power consumption. Remember, that’s for CPU+GPU+Peripherals combined. Again, read the fine print.

AMD performance per Watt 1

I’m pretty enthused about AMD’s re-entry into the embedded market. Will Intel counter with something similar? Maybe not, but their own ultra low power Atom-based SoCs are winning smartphone designs left and right and have plenty of horsepower to run MPEG4 decode, DRM, and dual screen displays a la Apple’s AirPlay. So it’s game on, boys and girls.

The AMD vs Intel battle has always been good for the entire industry as it has “lifted all boats”. Here’s to a flood of new devices in embedded.