print

Improving Autonomous Driving Communication and Safety with Private Blockchains

Here’s why Blockchain, a powerhouse database in finance and digital identification, has what it takes to become the backbone of automotive data communication—beginning with the autonomous car.


Blockchain technology isn’t just for Bitcoin: It’s driving into several other industries at a breath-taking velocity. It’s now well established for financial markets and digital identification, with other major industries such as healthcare and insurance companies in fast pursuit. Emerging areas for Blockchain are also diverse, covering areas such as energy, where micro-grid producers see Blockchain as a method to keep track of the energy generated. Blockchain itself is evolving as well, with Blockchain 2.0 promising even more functionally for broader groups by introducing new applications.

Figure 1: Yes, the use of Blockchain technology for V2V and V2i communication could be even closer than it appears.

Figure 1: Yes, the use of Blockchain technology for V2V and V2i communication could be even closer than it appears.

Blockchain can also be used throughout the automotive industry. Automotive applications range from revolutionizing the supply chain to authenticating ride sharing for a passenger and the vehicle owner. However, the clearest overall group of opportunities for automotive targets the critical functions autonomous vehicles perform when under their own control.

Communication Opportunities
One of the opportunities for Blockchain in the autonomous car deals with communication. That is Vehicle-to-Vehicle (V2V) communication as well as Vehicle-to-Infrastructure (V2i). Along with other vehicle based communications they are commonly grouped with, V2V and V2i can also be referred to as Vehicle-to Everything (V2X). Regardless if it’s V2V, V2i, or just V2X, all require fast and secure transmission of data as well as undisputable records—of the data, the transmission itself, and the recipient(s).

In V2V, vehicles inform other vehicles within their communication community about myriad details in the surrounding environment. One example would be real-time information regarding the roads traveled, including themes such as traffic flow, construction zones, workers on the road, etc. This type of detailed information can empower other vehicles in the communication community. Cars and trucks can optimize their performance and take the shortest time or distance route, based on real-time data. V2V can also lend itself to more core vehicle functions such as gear optimization on a given incline, allowing trucks to minimize fuel consumption. In V2V, autonomous communication to other similar vehicles (peer-to-peer) employing a fast and secure method is critical to the intelligent car’s core functionality.

Meet the Automotive Information Broker

In V2i, a car can produce thousands of independent information packets every minute and push them to what could be hundreds of infrastructure receivers from traffic lights to data aggregators. It’s an automotive information broker. The packets of information themselves hold little value independently, but when assembled with other vehicles, it then has substantial value in determining everything from dynamic traffic control to component wear patterns for a given class of car in a given geography. In V2i, fast and undisputable records are the key to success.

By using Blockchain for V2X, an OEM gains additional speed and frequency of secure transmissions not available with the majority of today’s OTA solutions. That is, the OTA solutions available are specifically designed to perform file transfers for either a full binary update or partial update for major systems such as infotainment, telematics, and (in some cases) the vehicles’ ECUs as well.

While these updates are highly secure, they are designed for the specific purpose of software updates. In V2X, the data transfer to or from the vehicle is typically small packets of data intended to either inform the vehicle or take an immediate action. A history or log is also advantageous for proof of action should an accident occur. Given the unique design of Blockchain, any record of any transmission can be validated for accuracy, thereby giving the OEM or any vehicle owner undisputable records of truth. This unique validation method is not available to the automotive market today. Blockchain also addresses the V2X security issues (many senders, many receivers) without leaving the vehicles vulnerable to hacking, making it an ideal data record for small packets of information.

As Blockchain comprises data records—a database—using it will not necessarily be a design consideration for the communication transport system itself. Underlying transmission standards such as the Wireless Access for Vehicular Environments (WAVE) for the U.S., which is based on the lower level IEEE 802.11p standard, and ETSI ITS-G5 for Europe, a standard also based on IEEE 802.11P, have focused on the transport system definition use. And the Car-to-Car communication consortium, a nonprofit industry driven organization also in Europe, has focused on standards for V2V and V2i. Blockchain use, rather than having an impact on these standards, would instead operate within the standards defined.


Greg-Bohl-6-17-16_WEBGreg Bohl is Vice President of the U.S. Analytics Services organization for HARMAN Connected Services. His work with analytics was launched over 20 years ago while at the Sabre Group and has continued through several companies including multiple start-ups. Greg has worked globally with OEMs defining a path of how machine learning and artificial intelligence can be used in the connected car. Publications range from numerical studies in clean technology through patents for predictive systems and methods used in the automotive industry. Greg has earned a BS-IS and MBA from the University of Texas, Arlington.

Share and Enjoy:
  • Digg
  • Sphinn
  • del.icio.us
  • Facebook
  • Mixx
  • Google
  • TwitThis